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We present a microscopic picture of quantum transport in quantum antidots in the quantum Hall regime
taking electron interactions into account. We discuss the edge state structure, energy-level evolution, charge
quantization and linear-response conductance as the magnetic field or gate voltage is varied. Particular atten-
tion is given to the conductance oscillations due to Aharonov-Bohm interference and their unexpected period-
icity. To explain the latter, we propose the mechanisms of scattering by point defects and Coulomb blockade
tunneling. They are supported by self-consistent calculations in the Hartree approximation, which indicate
pinning and correlation of the single-particle states at the Fermi energy as well as charge oscillation when
antidot-bound states depopulate. We have also found interesting phenomena of antiresonance reflection of the
Fano type.
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I. INTRODUCTION

An antidot is a potential energy hill in a two-dimensional
electron gas �2DEG� formed in a GaAs/AlGaAs heterostruc-
ture by a negative voltage applied on a surface gate.1 It is
often regarded as an artificial repulsive impurity and thus
considered to be the inverse of a quantum dot. By applying a
magnetic field perpendicular to the 2DEG, antidots have
been extensively and intensively studied to understand edge
state transport in the quantum Hall regime,2–8 charging in
open systems and its influence on Aharonov-Bohm �AB�
interference,4,8–11 fractionally quantized charge of Laughlin
quasiparticles,12 non-Abelian statistics of the fractional quan-
tum Hall 5/2 state,13 and others.1 Though electron transport
in antidots seemed to be well understood, recent experiments
of Goldman et al. revealed new unexpected features such as
multiple periodicity of the Aharonov-Bohm conductance
oscillations.14

In a magnetic field, quantum Hall edge channels form
closed pathways encircling an antidot.1,15 They are separated
from extended edge channels propagating along device
boundaries by quantum point-contact �QPC� constrictions
�see the insets in Fig. 1�. At a given magnetic field, there are
f leads propagating edge states in the leads at the Fermi en-
ergy. The electron density in the constrictions is smaller than
in the leads and, hence, only the lowest fc states are fully
transmitted, whereas the remaining highest f leads− fc states
are partially or fully reflected. A typical conductance of the
AB interferometer as a function of magnetic field exhibits a
steplike structure with plateaus separated by wide transitions
regions.3–6,14 At very low magnetic fields, the conductances
of the QPC constrictions are additive and behave like classi-
cal Ohmic resistors.16 When the magnetic field increases, the
conductance evolves from classical to quantum behavior
with the single-particle levels condensed into degenerated
Landau levels �LLs�. The steplike dependence of the conduc-
tance reflects successive depopulation of the LLs in the
constrictions.15 The plateau regions correspond to the field
range, where the QPC openings are fully transparent �the
transmission coefficient through an individual QPC is integer

T� fc�, and transition regions between these plateaus corre-
spond to the partially transparent QPC openings �the trans-
mission coefficient is noninteger fc�T� fc+1�. When a
single-particle state of the antidot-bound edge channel coin-
cides with the Fermi energy EF, it provides a pathway for
scattering from an edge channel on one side of the sample to
an edge channel on the opposite side. Thus, it gives rise to
pronounced AB conductance oscillations in the transition re-
gions between the plateaus.

According to the conventional theory of the Aharonov-
Bohm interferometer,15 its conductance shows a peak each
time the enclosed flux �=BS changes by the flux quantum
�0=h /e. Thus, the conductance of the interferometer as a
function of the magnetic field exhibits the periodicity

�B =
�0

S
. �1�

Here S=�r2 is the area enclosed by a circular antidot-bound
state of radii r, which approximates the geometrical area the
antidot gate �Fig. 1�. The enclosed flux through the interfer-
ometer can also be varied at a fixed magnetic field by chang-
ing an antidot gate voltage Vadot. In the case when the area
changes linearly with the change in the gate voltage �S
=��Vadot, the expected periodicity is

�Vadot =
�0

�B
. �2�

Since the experimental study of Hwang et al.,3 the inter-
pretation of Aharonov-Bohm oscillations based on Eq. �1�
has been widely accepted.1 Measuring the period �B, the
radii of the edge states circulating around the antidot can be
deduced. This gives valuable information about actual deple-
tion region in 2DEG. However, in the recent experimental
work of Goldman et al.,14 it was reported that the periodicity
of the AB oscillations as a function of the magnetic field
depends on the number of fully transmitted states in the con-
striction fc and is then well described by the dependence
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�B =
1

fc

�0

S
, �3�

which differs by a factor of 1 / fc from the conventional for-
mula �1�. On the other hand, the back-gate charge period
�Vadot was found to be the same for all fc, independent of
the magnetic field in stark contrast to Eq. �2�.14 This depar-
ture from the conventional periodicity of the AB oscillations
cannot be explained in a one-electron picture of noninteract-
ing electrons. To account for it, it is necessary to consider
electron interactions and/or Coulomb blockade �CB� charg-
ing effects. Coulomb interactions define a potentially impor-
tant energy scale because even rough estimation gives Cou-
lomb energy values that can exceed kinetic energy in
magnetic field ��c; �c=eB /m� and m� is effective electron
mass.14

The possible importance of CB charging was suggested
by earlier experiments of Ford et al.4 and Kataoka et al.,8

where doubled frequency of the AB oscillations was ob-
served. For the filling factor fc=2, one may anticipate that
resonances from one spin species should occur halfway be-
tween the neighboring resonances of the second spin species.
This is, however, not the case. In a later experiment, using
selective injection and detection of spin-resolved edge chan-
nels, it was shown that the antidot states with up spin do not
provide resonant paths in the h /2e AB oscillations.11 No
model of noninteracting electrons can explain this because in
such models the h /2e oscillations should be a simple com-
position of the two h /e oscillations coming from the two
spin species, and the phase shift between the two h /e oscil-
lations is determined by the ratio between the Zeeman en-
ergy and the single-particle level spacing. Since the ratio
depends on the antidot potential at the Fermi level and the
magnetic field, the noninteracting model cannot provide an

explanation of the sample-independent � phase shift. More-
over, in the absence of interactions, both spins should par-
ticipate in the resonant scattering, contradicting the experi-
mental observation that only the spin species with the larger
Zeeman energy contributes to the resonances.4,8,11 Thus, ex-
perimental findings gave strong motivation for a model that
takes electron interactions into account.

To explain double-frequency Aharonov-Bohm oscilla-
tions, models accounting for the formation of compressible
rings around the antidot8 and capacitive interaction between
excess charges were introduced.9 The first model is based on
the assumption that there are two compressible regions en-
circling an antidot separated by an insulating incompressible
ring. Screening in compressible regions, and Coulomb block-
ade, then force the resonances through the outer compress-
ible region to occur twice per h /e cycle.8 In the capacitive-
interaction model,9 two antidot-bound edge states are
assumed to localize excess charges that are spatially sepa-
rated from each other and from extended edge channels by
incompressible regions. This allows one to include in the
antidot Hamiltonian the capacitive coupling of excess
charges. In a regime of weak coupling, Coulomb blockade
prohibits relaxation of the excess charges unless one of the
antidot states accumulates exactly one electron or spin-flip
cotunneling between them is allowed. Analyzing the evolu-
tion of the excess charges as a function of magnetic field,
it was proposed that the process responsible for doubling of
the AB oscillations comprises two consecutive tunneling
events of spin-down electrons and one intermediate
Kondo resonance.9 This type of process agrees with the
experiment,11 where only the electrons with spin down con-
tribute to the h /2e AB oscillations.

A related topic of 1 / fc periodic AB oscillations has
been recently investigated both experimentally17,18 and
theoretically19,20 for the case of quantum dot-based interfer-

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

7

8

Vadot=-0.68 V

B (T)

G
(2

e
2
/h

)

Thomas-Fermi
Hartree

∆B

∆B

∆B

Vadot=-0.25 V

f c
=

1
f c

=
2

f c
=

3

b

lead gates

dopants
spacer

cap

2DEG

antidot gate

x

y

-400 0 400

-200

0

200

x (nm)

y
(n

m
)

-200

0

200

y
(n

m
)

-200

0

200

y
(n

m
)

0

3

|Ψ4|2

|Ψ2|2

|Ψ3|2

fc=1

fc=2

fc=3

*

*
*

FIG. 1. The AB conductance oscillations calculated in the Hartree �solid lines� and Thomas-Fermi �dashed lines� approximations for two
antidot gate voltages Vadot=−0.25, −0.68 V, and for temperature T=0.2 K. �B marks the AB period, which is the same for any filling factor
in the constriction fc. Insets on the right show the wave-function modulus for different fc. The arrows with stars mark positions where the
former was calculated. Inset on the top shows schematic structure of the antidot-based AB interferometer. Top pattern denotes the metallic
gates on the GaAs heterostructure. The radius of the antidot gate is R=200 nm. 2DEG resides a distance b from the surface.
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ometers. The experiments of Camino et al.17 clearly demon-
strated that the magnetic-flux AB period is described by Eq.
�3� and the gate voltage period stays constant for any filling
factor fc. Moreover, the authors reanalyzed the existing ex-
perimental data and showed that all of it can be also well
described by Eq. �3�. To explain 1 / fc scaled period of AB
oscillations in quantum dots, Coulomb blockade theory was
introduced in Ref. 19. Assuming that a compressible island
exists inside the quantum dot, the AB period is caused by
charging of fc fully occupied LLs in the dot. The validity of
this assumption for the compressible island as well as the
electrostatics of the AB interferometer has been discussed in
Ref. 20 by two of the present authors. It was shown and
explained why the scattering theory based on Landauer
formula15 predicts the conventional AB periodicity �Eqs. �1�
and �2��. A very recent experiment of Zhang et al.18 pointed
out that 1 / fc period oscillations that are caused by the CB
effect hold in an AB interferometer with a small quantum
dot. However, as the dot size increases, the charging energy
becomes an unimportant energy scale and the conventional
AB oscillations are restored.

In the present paper, motivated by the experiment of
Goldman et al.,14 we address electron transport through the
antidot AB interferometer from different standpoints. Start-
ing from a geometrical layout of the device, we calculate
self-consistently the edge state structure, energy-level evolu-
tion, charge quantization, and linear-response conductance in
the Thomas-Fermi �TF� and Hartree approximations. We find
that the AB periodicity is well described by the conventional
formulas �1� and �2� in the case of the ideal structure without
impurities. The conductance is dictated by the highest-
occupied �fc+1�th state in the constrictions, but the fc
antidot-bound states are well localized and do not participate
in transport. Electron interactions in the Hartree approxima-
tion pin the fc single-particle states to the Fermi level and
force their mutual positions to be correlated. The Hartree
approach also predicts that the number of electrons around
the antidot oscillates in a saw-tooth manner reflecting se-
quential escape of electrons from the fc edge states. For low
temperatures, we have found an interesting phenomenon that
we call antiresonance reflection of the Fano type. While the
Hartree and Thomas-Fermi approximations do not reproduce
experimental 1 / fc AB periodicity,14 we explore two mecha-
nisms that might be relevant, namely, scattering by impuri-
ties and Coulomb blockade tunneling.

II. MODEL

We consider an antidot AB interferometer defined by split
gates in the GaAs heterostructure similar to those studied
experimentally.1,3–5,10,14 A schematic layout of the device is
illustrated in Fig. 1. Charge carriers originating from a fully
ionized donor layer form the 2DEG, which is buried inside a
substrate at the GaAs /AlxGa1−xAs heterointerface situated at
a distance b from the surface. Metallic gates placed on the
top define the antidot and the leads at the depth of the 2DEG.

The Hamiltonian of the whole system, including the semi-
infinite leads, can be written in the form H=H0+V�r�, where

H0 = −
�2

2m��� �

�x
−

eiBy

�
�2

+
�2

�y2	 �4�

is the kinetic energy in the Landau gauge, and the total con-
fining potential

V�r� = Vconf�r� + VH�r� , �5�

where Vconf�r� is the electrostatic confinement �including
contributions from the top gates, the donor layer, and the
Schottky barrier�, VH�r� is the Hartree potential,

VH�r� =
e2

4��0�r

 dr�n�r��� 1

�r − r��
−

1
��r − r��2 + 4b2� ,

�6�

where n�r� is the electron density, the second term corre-
sponds to the mirror charges situated at the distance b from
the surface, and �r=12.9 is the dielectric constant of GaAs.
Equation �6� accounts for the average electrostatic potential
generated by the total charge density. Though it is in general
three dimensional, the thickness of the 2DEG is assumed to
be small such that electrons occupy only the lowest-energy
level in the z direction. Typically, the electrons reside within
a well 10 nm thick,15 which is about the lattice constant of
our discretization mesh. Thus, the three-dimensional nature
of the 2DEG is not expected to affect the computational re-
sults significantly. Another assumption underlying Eq. �6� is
the low-frequency approximation for image charges. The an-
tidot and the leads are treated on the same footing, i.e. the
electron interaction and the magnetic field are included both
in the lead and in the antidot regions.21

We calculate the self-consistent electron densities, poten-
tials, and the conductance on the basis of the Green’s func-
tion technique. The description of the method can be found
in Refs. 21–23 and thus the main steps in the calculations are
only briefly sketched here. First, we compute the self-
consistent solution for the electron density, effective poten-
tial, and the Bloch states in the semi-infinite leads by the
technique described in Ref. 24. Knowledge of the Bloch
states allows us to find the surface Green’s function of the
semi-infinite leads. We then calculate the Green’s function of
the central section of the structure by adding slice by slice
and making use of the Dyson equation on each iteration step.
Finally, we apply the Dyson equation in order to couple the
left and right leads with the central section and thus compute
the full Green’s function G�E� of the whole system. The elec-
tron density is integrated from the Green’s function �in the
real space�,

n�r� = −
1

�



−	

	

I�G�r,r,E��fFD�E − EF�dE , �7�

where fFD is the Fermi-Dirac distribution. This procedure is
repeated many times until the self-consistent solution is
reached; we use a convergence criterion �ni

out−ni
in� / �ni

out

+ni
in��10−5, where ni

in and ni
out are input and output densi-

ties on each iteration step i.
Finally, the conductance is computed from the Landauer

formula, which in the linear-response regime is15
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G = −
2e2

h



−	

	

dET�E�
� fFD�E − EF�

�E
, �8�

where the transmission coefficient T�E� is calculated from
the Green’s function between the leads.21–23

To clarify the role of the electron interaction we also cal-
culate the conductance in the TF approximation, where the
self-consistent electron density and potential are given by the
semiclassical TF equation at zero field

��2

m�
n�r� + V�r� = EF. �9�

This approximation does not capture effects related to
electron-electron interaction in quantizing magnetic field
such as the formation of compressible and incompressible
strips and, hence, it corresponds to the noninteracting one-
electron approach where, however, the total confinement is
given by a smooth fixed realistic potential.21,25

While the present approach is not expected to account for
single-electron tunneling in the conductance �leading to the
Coulomb blockade peaks�,26 one can expect that it correctly
reproduces a global electrostatics of the interferometer and
microscopic structure of the quantum-mechanical edge states
regardless whether the conductance is dominated by a single-
electron charging or not. This is because the interferometer is
an open system with a large number of electrons surrounding
the antidot and, thus, the electrostatic charging caused by a
single electron hardly affects the total confining potential of
the interferometer. Thus, the results of the self-consistent
Hartree approach provide accurate information concerning
the locations of the propagating states and the structure of
compressible/incompressible strips in the interferometer. Our
calculations are also expected to provide detailed informa-
tion concerning the coupling strengths between the states in
the leads and around the antidot.

III. RESULTS AND DISCUSSION

We calculate the magnetotransport of a quantum antidot
AB interferometer with the following parameters representa-
tive of a typical experimental structure.1,3–5,10,14 The 2DEG is
buried at b=50 nm below the surface �the widths of the cap,
donor, and spacer layers are 14 nm, 26, nm and 10 nm,
respectively�, the donor concentration is 1.02
1024 m−3.
The width of the quantum wire and semi-infinite leads is 700
nm. The radius of the antidot gate is R=200 nm �see Fig. 1�.
The gate voltage applied to the lead gates is Vlead=−0.4 V.
With these parameters of the device, there are 25 channels
available for propagation in the leads and the electron den-
sity in the center of the leads is nlead=2.5
1015 m−2.

A. Magnetic-flux periodicity of Aharonov-Bohm oscillations

Figure 1 shows the conductance of the AB interferometer
as a function of magnetic field calculated for the quantum-
mechanical Hartree and semiclassical Thomas-Fermi ap-
proximations. At very low magnetic field, the conductances
of two parallel QPC constrictions are additive and behave
like Ohmic resistors.16 At high magnetic field, in the quan-

tum Hall regime, the total conductance exhibits steplike de-
pendence caused by gradual depopulation of the LLs.15 All
channels for electron propagation are fully open or fully
blocked in the plateau regions, while a partly transmitted
channel is present in the transition regions. The conductance
oscillations due to Aharonov-Bohm interference are clearly
seen in the transition regions, which indicates that they are
caused by the �fc+1�th partly transmitted channel.

The Aharonov-Bohm oscillations reveal the same period
�B=15 mT independent of fc for both the Hartree and
Thomas-Fermi approximations as is seen in Fig. 1. This pe-
riodicity is in excellent agreement with the conventional AB
formula �1�. It corresponds to an area enclosed by skipping
orbits of 0.28 �m, which gives a circle radius of r
=300 nm. The latter is slightly larger that the geometrical
radius of the antidot gate R=200 nm and is in agreement
with the wave-function maps in the insets in Fig. 1. The
plotted wave functions show how the antidot-bound states
depend on the number of Landau levels fc �and therefore on
the value of magnetic field� and also on the antidot gate
voltage.

The AB oscillations can be related to the evolution of the
corresponding energy spectrum when single-electron states
cross the Fermi level each time the flux, through the antidot,
increases by the flux quantum. This is illustrated in Fig. 2�b�,
which shows an evolution of the resonant levels as a function
of magnetic field in the vicinity of the Fermi energy. �To
obtain the evolution of the resonant levels, we draw an
imaginary ring and analyze the density of states �DOS� there
at each given B. The inner radius of the ring is chosen to be
the antidot radius and the outer radius is 150 nm larger, i.e.
we account for all states in the range 200–350 nm from the
center. When DOS has been calculated, its peaks are
searched for and their positions are plotted as illustrated in
Fig. 2�b��. Each conductance minimum of the AB interfer-
ometer seen in Fig. 2�a� corresponds to a resonant-level
aligns with the Fermi energy EF in Fig. 2�b�, implying a
condition of resonants reflection of the extended edge state in
the lead by the antidot.2 However, two out of every three
states present in Fig. 2�b� are associated with neither mini-
mum nor maximum of the AB conductance oscillations at
0.2 K �the dashed curve in Fig. 2�a��. Only if the temperature
is lowered from 0.2 to 0.02 K does the conductance start to
reveal a feature caused by their presence at EF. Inspection of
the DOS at B=0.814 T �see the inset in Fig. 2�b�� shows that
these extra states produce very narrow and sharp resonances
�with broadening �kBT for T=0.2 K�, while the resonance
due to the conductance-mediating state is broad and low ��
kBT�. Let us call two former states “antidot-bound states”
and refer to the latter one as a “transport state.” The single-
particle transport state originates from the partly transmitted
�fc+1�th LL in the constriction. It is strongly coupled to the
extended edge states in the leads. By contrast, all fc antidot-
bound states are weakly coupled to the extended edge states
because they are situated closer to the antidot hill and sur-
rounded by an incompressible strip. Figure 2�c� displays lo-
cal density of states �LDOS� maps clearly showing the pres-
ence of fc=1 and fc=2 antidot-bound states at corresponding
resonance peaks in DOS. Note that the evolution of both the
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antidot-bound and transport states is not correlated between
each other. All of them cross the Fermi energy at different
magnetic fields although the �B interval for single-particle
states belonging the same LL stays constant. This is a char-
acteristic feature of noninteracting electrons in the Thomas-
Fermi approximation.

B. Antiresonance reflection

To understand features that are seen to be superimposed
on the AB conductance oscillations in Fig. 2�a�, let us first
look at the wave functions and LDOS at minima and maxima
of the conventional AB oscillations due to the �fc+1�th trans-
port state. These are shown in Fig. 3: the wave functions for
fc lead edge states show perfect transmission through the
device, while the state fc+2 as well as all higher states ex-
hibit perfect reflection of the incoming state from the left
lead back into the left lead. The only state modulating the
transport through the antidot is the transport state fc+1. It
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effectively provides a resonant tunneling pathway between
incoming and outgoing edge channels via the antidot-bound
state. Inspection of LDOS in Figs. 3�i�–3�l� shows the pres-
ence of the single-particle state at the Fermi energy during
resonant reflection via �fc+1�th transport state.

At low temperatures, the fc antidot-bound states produce a
sharp zigzaglike feature in the conductance as shown in Fig.
2�a� at T=0.02 K. This effect is most pronounced for B
=0.79 T and might be attributed to a Fano-type resonance.27

It differs qualitatively from the common resonance dip due
to �fc+1�th transport states. In order to get insight into its
origin, let us look at the transmission coefficient Tfc+1 vs
energy plot �Fig. 4�c��. Note that the conductance is an inte-
gral over the total transmission weighted by the Fermi-Dirac
derivative �Eq. �8�� and, thus, it can not resolve all of the
details unless the temperature is extremely low. Overall, the
dependence of Tfc+1 is quite smooth showing a deep mini-
mum associated with resonant reflection of �fc+1�th state.
This state can also be monitored in DOS as the wide and low
peak �Fig. 4�b��. However, there is a superimposed zigzag-
like jump in Tfc+1, which is totally different and caused by
scattering between the �fc+1�th state and the fc one. It hap-
pens at E=0.014 meV in Fig. 4�c� and is caused by 3↔2
scattering. At an energy slightly less than E=0.014 meV,
there is a sharp dip, which is associated with the third ex-
tended state being well coupled to the second antidot-bound
state �Fig. 4�e��. However, as energy increases and slightly
exceeds E=0.014 meV, it turns into a sharp peak with the
antidot-bounded state becoming perfectly isolated �Figs.
4�f��. The fact that it is isolated can be seen as an absence of
“bridges” to the extended lead state and almost perfect
circled shape. Because the shake reveals in the transmission,
this feature is not indent in the conductance at temperatures
exceeding kBT��. We refer to this type of resonance as an
antiresonance of the Fano type27 since it results from quan-
tum interference between two processes: one involving

strongly localized state, the fc antidot orbital, and the other
being the less strongly localized fc+1 orbital. When the in-
cident energy exactly coincides with the antiresonance en-
ergy, the AB phase 2�� /�0 flips by �=�. It is worth men-
tioning that the antiresonance here differs from the phase
change in the AB conductance oscillations observed in Refs.
4–6, where a phase flip between consecutive oscillations ac-
companied by the change in oscillation period.5,6

C. Effect of electron interaction in Hartree approximation

Accounting for electron interactions within the quantum-
mechanical Hartree approximation brings qualitatively new
features to the AB oscillations �Fig. 5�. First, the conduc-
tance does not show perfect smooth regular oscillations any
longer: their shapes become very distorted, which is espe-
cially pronounced as temperature lowers. Secondly, the en-
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ergy levels from both fc+1 and fc edge states become corre-
lated: their positions at EF become more equally spaced. This
is attributed to the effect of Coulomb interaction that favors
only one single-particle state being depopulated at a given
magnetic field. In other words, electrons escape from local-
ized fc states one by one. Third, as the temperature decreases
the energy levels due to fc edge states become pinned to EF
�Figs. 5�c� and 5�d��. We define the pinning as a lower slope
at EF �see Ref. 21 for a detailed discussion of the pinning
effect�. When a state is pinned to EF, it easily adjusts its
position or occupation in response to any external perturba-
tion. The role of the perturbation might be played by either
magnetic field or applied gate voltage. Therefore, the screen-
ing of the antidot, and related metalliclike behavior of the
system, is provided solely by the fc states not by the �fc
+1�th transport state. The latter crosses EF steeply and me-
diates the conductance oscillations in a similar fashion to that
in the semiclassical Thomas-Fermi approximation. Fourth,
the number of electrons N in an annulus around the antidot
shows saw-tooth oscillations that reflects pinning and de-
population of fc edge states. Intervals of magnetic field with
linear negative slopes of N and pinned states are marked by
the shaded regions in Fig. 5. The negative slopes of N in Fig.
5�a� are caused by gradual depopulation when the corre-
sponding single-particle state is pushed up in energy and its
occupation decreases. Note that the change in electron num-
ber is less than unity, which we explain by the finite tem-
perature and bulk states captured in the region of interest, i.e.
in the annulus of 200–350 nm size from the center. It also
worth noting that the saw-tooth dependence of N is in excel-
lent agreement with the experimental findings in Ref. 10.

While the shape of the AB conductance oscillations is
strongly nonsinusoidal in the Hartree approximation, their
periodicity still described by the conventional Eq. �1� that, in
turn, disagrees with the experiment of Goldman et al.14 The
Hartree approach is known to describe well the electrostatics
of the system at hand. This is confirmed by the good agree-
ment with numerous experiments including, for example,
formation of compressible/incompressible strips in quantum
wires28 and the statistics of conductance oscillations in open
quantum dots.25 Thus, the validity of the energy-level evolu-
tion as well as the electron number oscillation presented in
Fig. 5 is indeed qualitatively correct. The conductance, how-
ever, may be incorrect. It is calculated using the Landauer-
Buttiker formalism that has been shown to fail in the regime
of weak coupling, when the conductance is less than the
conductance quantum G0=2e2 /h.26 Though the total conduc-
tance is larger than G0, the antidot is in the weak-coupling
regime �a related discussion of quantum dot-based AB inter-
ferometers is given in Ref. 20�. This is because of the adia-
batic character of the transport when the lowest fc states pass
through the interferometer without any reflection �see Fig.
3�. The highest �fc+1�th transport edge state, giving rise to
the AB oscillations in the transition regions between the pla-
teaus, becomes thus effectively decoupled from the remain-
ing fc states. Therefore, because of well-localized fc states
and partly localized �fc+1�th state, the electron charge in
the antidot may become quantized and transport through the
interferometer strongly affected by the Coulomb blockade
effect.

D. Gate voltage periodicity of Aharonov-Bohm oscillations

The Aharonov-Bohm oscillations can be also observed
when the gate voltage varies for a fixed magnetic field. Fig-
ure 6 shows the conductance as a function of the antidot gate
voltage calculated in the Thomas-Fermi and Hartree approxi-
mations for B=0.8 T. As in the case of magnetic field de-
pendence �Fig. 1�, the AB conductance oscillations are pro-
nounced in the transition regions between plateaus. However,
the period �Vadot scales linearly with the filling factor fc, in
agreement with the conventional formula �2�.

Both magnetic field and gate voltage periodicity of the
AB oscillations are well described by conventional formulas
�1� and �2�. However, it disagrees with the experiment �Ref.
14�. To overcome this discrepancy, we consider two effects
in the following, namely, the scattering by random impurity
potentials and the Coulomb blockade theory.

E. Scattering by random impurity potentials

It is known that impurity scattering might substantially
modify electron transport in AlGaAs heterostructures.15 De-
pending on the nature of scatters, the scattering potential
varies widely. Charged impurities, such as ionized donors,
have a long-range potential, whereas neutral impurities have
short-range potentials. These two cases have different effects
on electron transport. The first leads to the localization of
edge states in the quantum Hall regime and strong modifica-
tion of the transition regions between quantum Hall
plateaus.29 The edge states circulating around the antidot
might change their locations and, as a result, the AB oscilla-
tions might experience sudden period changes.5,6 Because
1 / fc periodicity in the experiment of Goldman et al.14 is
robust and measured for different cool down cycles, we are
skeptical that the long-range scattering is responsible for
1 / fc periodicity and concentrate in the following on the
short-range scattering.

A physical realization of the short-range disorder potential
occurs if some neutral impurity, such as Al atom, has dif-
fused out of a AlGaAs barrier into a GaAs well where the
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2DEG resides. The Al atoms are the scattering centers with a
potential Vimp. Because we are interested in scattering be-
tween the extended and bound states and between different
bound and partly bound states, we generated random point
scatters in the vicinity of the antidot. Figures 7�a� and 7�b�
show the conductance and energy-level structure calculated
in the Thomas-Fermi approximation for the case of 500 ran-
dom scatters, which corresponds to concentration nimp
=1015 m−2. As the magnitude of Vimp increases, the scatter-
ing between different edge states becomes stronger. The AB
oscillations due to resonant reflection of the �fc+1�th state
are gradually suppressed with a new oscillation pattern
emerging from resonant transmission via the fc antidot-
bound states. The positions of the AB conductance peaks are
clearly correlated with the antidot-bound states crossing EF
�see Figs 7�a� and 7�b��. The transport �fc+1�th state, which
governs the conductance in the ideal case without impurities,
becomes easily destroyed because it is half-filled in the QPC
constrictions and, thus, slight potential fluctuations effec-
tively block its propagation. However, in contrast to the ideal
case with no defect scattering, for strong defect scattering a
resonant transmission peak is visible in Fig. 7�a� whenever
any antidot-bound state crosses EF in Fig. 7�b� at the higher
values of the magnetic field that are shown.

The Hartree approximation �Fig. 7�c�� does not clearly
recover resonant transmission triggered by the disorder po-
tential, as it occurs in the Thomas-Fermi approach. In this
case, there are only faint remnants of resonant transmission

via the fc antidot-bound states at Vimp=20 meV. We attribute
this to inadequate modeling of point defects due to Al atoms.
The minimal area that can be occupied by a defect in our
simulations is 5
5 nm2. This is two orders of magnitude
larger than the realistic cross section of the Al atom. On the
other hand, the height of the realistic defect potential is also
much larger and on the order of Vimp

Al �1 eV. Note that the
screened potential after self-consistent calculation is about
ten times smaller than the input Vimp in Fig. 7�c�. If we
perform simulation for higher potentials, the self-consistent
density becomes quickly washed out preventing electron
transport through the region occupied by the defects. Based
on our calculations in the TF approximation that are de-
scribed above, we conclude that the short-range disorder is a
plausible source of 1 / f AB periodicity, but a quantitative
comparison based on the more sophisticated Hartree approxi-
mation remains to be done and is beyond the scope of the
present work.

F. Coulomb blockade model for Aharonov-Bohm oscillations

The quantum antidot does not confine electrons electro-
statically, but sufficiently large magnetic field causes the for-
mation of localized bound states where charge might be
quantized. Direct evidence of the charging effect in the anti-
dot was given in the experiment of Kataoka et al.10 Placing a
noninvasive voltage probe in close proximity to the antidot,
they detected steady accumulation followed by sudden relax-
ation of a localized excess charge nearby. The saw-tooth re-
sistance oscillations measured by the detector coincide with
the resonances monitored in the antidot conductance. There-
fore, it was concluded that a source of the excess charge is
the antidot, and its conductance is mediated by Coulomb
charging. Additional evidence for the CB effect follows from
the measurement of the conductance as functions of both
magnetic field and source-drain bias, where clear and regular
Coulomb diamonds were observed.10 The doubled frequency
conductance oscillations measured in Refs. 4 and 8 are also a
strong indication of the Coulomb charging in the antidot.
Thus, we conclude that 1 / fc periodicity observed by Gold-
man et al.14 might be a result of the CB effect. As an indirect
support, it is worth mentioning that a rough estimation of the
electron Coulomb interaction energy gives values exceeding
kinetic energy in magnetic field.14

Motivated by these experimental arguments as well as our
calculation results presented above, we develop a simple
phenomenological model based on the CB orthodox
theory.30,31 Let us consider a case of fc fully occupied LLs in
the QPC constrictions, when the conductance is near a pla-
teau region. Notice that this case is represented in the experi-
ment of Goldman et al.14 Figure 8�a� illustrates schemati-
cally the edge states existing around the antidot. For a given
magnetic field and antidot gate voltage, we may draw a
closed curve of area S that encompasses all fc bound states.
There is some background number of electrons N inside the
area S. If we fix the position of the curve and increase the
field by amount �B=�0 /S, the total flux through the refer-
ence area � will increase by one flux quantum �0. One
single-particle state in each fc LL gets pushed up in energy,
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crosses the Fermi energy, and becomes depopulated. The
number of electrons in the reference area drops by fc. How-
ever, it is known that the magnetic field does not change the
number of electrons15 and, thus, electrons cannot just disap-
pear. There must be a balancing influx of electrons into LLs
in a way that the degeneracy of each LL increases exactly by
one. For the case of a voltage applied to the antidot gate, a
background charge in the reference area can be increased and
Ngate additional electrons can be attracted to the area S.
Hence, we obtain a total charge imbalance inside the area S
given by eN+frac�efc��−eNgate, which leads to a charging
energy

E =
e2

2C
�N + frac�efc�� − Ngate�2, �10�

where C is the capacitance of the island and frac�x� means
the fractional part of x. Note that the charging energy �10�
takes the same value when � changes by 1 / fc. Therefore,
magnetic field periodicity satisfies Eq. �3� as measured in the
experiment of Goldman et al.14 The antidot gate period, how-
ever, is one-electron charge in the reference area independent
of the filling factor. It is also worth noting a similar approach

to CB charging for the quantum dot-based interferometer
�Ref. 19�.

We have several comments about the CB theory proposed
above. First, the change in magnetic field or gate voltage is
supposed not to be large so that the reference area S always
encloses a fixed number fc of edge states. Secondly, all edge
states encircle the antidot at about the same radii from the
center and the extent of their wave functions is an unimpor-
tant length scale. This is evidently correct for large antidot
radii or large magnetic fields. Third, the charging energy �10�
does not depend on which particular edge state builds the
charge imbalance at a given field and gate voltage. Equation
�10� rather treats all fc states as one single-electron island.
However, our calculations within both the Thomas-Fermi
and Hartree approaches identify the highest LL as the most
important for electron transport. On the other hand, experi-
mental data clearly indicate that transport occurs via the
highest LL �the outermost edge state� when the antidot in the
CB regime.11 Thus, we assume that a single-electron island
implied in Eq. �10� has an internal structure and functions as
a single-electron trap30 �see Fig. 8�b��. Electrons sequentially
hop from the low-lying LLs into the extended edge states
and vice versa via highest �fc�th LL. This is supported by
electrostatics shown in Fig. 5�a�, where states depopulate one
by one.

To solve the electron-transport problem in the Coulomb
blockade regime as governed by Eq. �10�, we employ the
standard orthodox theory.30,31 It describes an evolution of
system via a “master” equation for p�N�, the probability that
there are N electrons in the island

�N−1→Np�N − 1� + �N+1→Np�N + 1�

= ��N→N−1 + �N→N+1�p�N� . �11�

Here �N�→N is the sum of the transition rates through tunnels
barriers, which change the electron number N� to N. Each
transition rate treats tunneling of a single electron through a
tunnel barrier as a random event and depends on the reduc-
tion in the electrostatic energy of the system �Eq. �10��, re-
sulting from such a tunneling event. For example, the tran-
sition rate from the source electrode to island reads as

�s→i�N� =
�Es→i�N�

e2Rs
�1 − e�Es→i�N�/kBT�−1, �12�

where �Es→i�N� is the energy change after tunneling from
the source to the island and Rs is the resistance of the tun-
neling barrier between the source and island. We solve Eq.
�11� and then calculate the average current as

I = �
N

��s→i�N� − �i→s�N��p�N� . �13�

Figures 8�c� and 8�d� show a representative calculation
for the case of fc=3. We use capacitances and resistances of
the tunnel barriers estimated from our self-consistent calcu-
lations given above. For a realistic quantum antidot shown in
Fig. 1, approximate parameters are C1=C2�10−18 F and
R1=R2�125 k�. R1 and R2 are chosen to yield peak widths
in Fig. 8�d� similar to those in the experimental measure-
ments of Goldman et al.14 The excess charge �q as a func-
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tion of magnetic flux is shown in Fig. 8�c�. It oscillates in a
saw-tooth manner within a window −0.5��q�0.5. Each
time the value +0.5 is approached, an electron tunnel through
the potential barriers with no energy cost and substantial cur-
rent starts flowing through the antidot. When the magnetic
flux increases further, one of the LLs gets recharged by one
electron and the process repeats for another LL. For fc=3,
the increase in magnetic field by the flux quantum �0 gener-
ates three successive rises of �q and three related peaks of
the current. Note that the current is proportional to the resis-
tance measured in a two-terminal setup.

IV. CONCLUSIONS

In the present paper, we provide a microscopic physical
description of the edge states existing in the quantum antidot
focusing on the related conductance oscillations due to the
Aharonov-Bohm interference. Motivated by recent experi-
ment of Goldman et al.,14 we discuss different mechanisms
that might be a source of measured 1 / fc periodicity of the
AB conductance oscillations. Our findings are summarized
as follows.

�1� Approaches based of the Hartree and Thomas-Fermi
models for an ideal antidot structure predict the conventional
AB conductance oscillations, as described by formulas �1�
and �2�, i.e., magnetic field period does not depend on fc and
gate voltage period scales linearly with fc. This is caused by
transport isolation of the fc edge states circulating around the
antidot and the conductance being modulated solely by the
highest-occupied �fc+1�th state in the constrictions.

�2� Electron interactions in the quantum-mechanical Har-
tree approximation bring qualitatively new features to the
electrostatics of the antidot AB interferometer. The single-
particle states originating from the fc edge states become
pinned to the Fermi energy. Their mutual positions at the
Fermi energy are correlated, such that there is only one
single-particle state depopulating at a given magnetic field
and gate voltage. The number of electrons around the antidot
shows a related saw-tooth dependence. It reflects the fact that
particles escape sequentially, i.e., one by one.

�3� As the temperature decreases, both the Hartree and
Thomas-Fermi approximations start to reveal a reflection an-
tiresonance of the Fano type. This manifests itself as zigzag
jumps in the conductance, with the �fc+1�th transport state
scattered into fc antidot-bound state and vice versa. On the
lower-energy side of the antiresonance, these states are
strongly coupled with each other, but they are perfectly iso-
lated on the high-energy side.

�4� The experimentally measured 1 / fc periodicity might
be recovered if some disorder is introduced around the anti-
dot. This can be naturally realized due to Al atoms diffused
into the well where the 2DEG is. A short-ranged potential
forces different edge states to mix and all fc states might start
to participate in transport. This is accompanied by changing
of the AB conductance from resonant reflection to resonant
transmission.

�5� A simple Coulomb blockade theory might also explain
the 1 / fc periodicity. Using information about edge states and
their occupancy from the self-consistent calculations, we

write down the charging energy of the system and calculate
the transport in the sequential tunneling regime. When the
magnetic field changes by a flux quantum, the system expe-
riences recharging by fc electrons.

While the experiment14 as well as our present study show
presumably that 1 / fc AB periodicity is caused by CB tunnel-
ing, we suggest an experiment to verity that. If the size of the
antidot were increased many times, the capacitance of the
system would increase proportionally. The charging energy,
therefore, would decrease and CB tunneling becomes
unimportant.18 In this situation, the conventional AB oscilla-
tions, independent of fc if magnetic field changes, should be
restored.

From the theoretical point of view, it would be interesting
to calculate the conductance by the Hartree-Fock approach,
where the self-interaction problem is eliminated. One might
also try density-functional theory with a proper exchange-
correlation functional that avoids self-interaction errors as
well.
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APPENDIX: EXPLANATION OF INCREASED
CONDUCTANCE DUE TO PRESENCE OF IMPURITIES

IN HARTREE APPROXIMATION

Figure 9 shows the partial transmission coefficients for
the antidot without and with impurities as calculated in the
Hartree approximation. Each curve gives the transmission
probability for an electron incident from the left lead and
passing into the right lead. For the ideal antidot structure,
transmission is near unity or zero except for the �fc+1�th
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state, i.e., the third state in Fig. 9. When impurities are
present, they effectively mix all states and prevent perfect
transmission or reflection with unity or zero transmission. As
a result, electrons from LLs in the leads that were perfectly
reflected become partly transmitted through the antidot and
the conductance, which is the sum of all transmission coef-
ficients, rises �see Fig. 7�c��. This feature of the self-

consistent calculation in the Hartree approach is in contrast
to the simpler Thomas-Fermi approach. The latter, as ex-
pected, predicts the conductance being decreased when im-
purities are introduced because in the Thomas-Fermi model
the increase in the transmission of modes 4 and 5 when im-
purities are introduced is insufficient to compensate for the
decrease in the transmission of modes 1 and 2.
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